SPINNAKER BIOSCIENCES, INC.



Publications

1. Nieto, A. et al. Surface Engineering of Porous Silicon Microparticles for Intravitreal Sustained Delivery of Rapamycin. Invest. Ophthalmol. Vis. Sci. 56, 1070–1080 (2015).


2.  Nan, K. et al. Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater. 10, 3505–3512 (2014).


3.  Hou, H. et al. Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J. Control. Release Off. J. Control. Release Soc. 178, 46–54 (2014).


4.  Hartmann, K. I. et al. Hydrosilylated porous silicon particles function as an intravitreal drug delivery system for daunorubicin. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 29, 493–500 (2013).


5.  Nieto, A., Hou, H., Sailor, M. J., Freeman, W. R. & Cheng, L. Ocular silicon distribution and clearance following intravitreal injection of porous silicon microparticles. Exp. Eye Res. 116, (2013).


6. Chhablani, J. et al. Oxidized Porous Silicon Particles Covalently Grafted with Daunorubicin as a Sustained Intraocular Drug Delivery System. Invest. Ophthalmol. Vis. Sci. 54, 1268–1279 (2013).


7.  Wu, E. C. et al. Real-time Monitoring of Sustained Drug Release using the Optical Properties of Porous Silicon Photonic Crystal Particles. Biomaterials 32, 1957–1966 (2011).


8.  Andrew, J. S. et al. Sustained Release of a Monoclonal Antibody from Electrochemically Prepared Mesoporous Silicon Oxide. Adv. Funct. Mater. 20, 4168–4174 (2010).


9.  Anglin, E. J., Cheng, L., Freeman, W. R. & Sailor, M. J. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 60, 1266–1277 (2008).


10.  Cheng, L. et al. Intravitreal properties of porous silicon photonic crystals. Br. J. Ophthalmol. 92, 705–711 (2008).

Safe Sustained Drug Delivery using Nanoporous Silicon Particles